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Introduction 
 
When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the 
neutron will actually gain energy (i.e., up-scatter) from the interaction.  This phenomenon is in addition 
to the more usual case of the neutron losing energy (i.e., down-scatter).  Furthermore, the motion of the 
target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to 
energies lower than predicted by the simple asymptotic models. 
 
In recent years, more attention has been given to temperature-dependent scattering cross sections for 
materials in neutron multiplying systems.  This has led to the inclusion of neutron up-scatter in 
deterministic codes like Partisn and to free gas scattering models for material temperature effects in 
Monte Carlo codes like MCNP and cross section processing codes like NJOY.  The free gas scattering 
models have the effect of Doppler Broadening the scattering cross section output spectra in energy and 
angle. 
 
The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering 
resonances will be reviewed, and suggestions will be made for further developments.  The focus will be 
on the free gas scattering models currently in use and the development of new models to include high-Z  
resonance scattering effects.  These models change the neutron up-scattering behavior. 
 
 
The Asymptotic Approach to Neutron Scattering 
 
As a backdrop to the free gas scattering models being discussed, the essential elements of the 
elementary asymptotic approach to neutron elastic scattering include: 
 

(1) The target nucleus is assumed to be at rest 
(2) The neutron scattering off of the target nucleus is assumed to be isotropic in the center of 

mass system 
(3) The scattering cross section is assumed to be a constant with respect to incident neutron 

energy (or at least very slowly varying). 
 
With these assumptions, no neutron up-scattering is possible and neutron down-scattering is limited to 
a set fraction of the incident neutron energy, (A-1)2/(A+1)2

  where A is the atomic weight ratio of the 
target nucleus and the neutron.  Furthermore, the angle of scattering has a one to one correspondence 
with the energy loss.  The maximum energy loss for the neutron occurs for backscattering reactions and 
the minimum energy loss occurs with forward scattering. 
 
Neutron Up-Scattering in Monte Carlo Calculations 
 



The effect of the free gas scattering model is to Doppler Broaden the scattering cross sections, 
(specifically, the scattered neutron output spectra in energy and angle).  MCNPJ1,J2 handles neutron up-
scattering as an inherent part of the free gas scattering model used to model material temperature 
effects.  The free gas model also allows neutron down-scattering beyond the (A-1)2/(A+1)2

  limit of the 
asymptotic theory. 
 

 
 
 
Figure 1:  Neutron Scattering off of He-4 at Room Temperature 
 
This is seen in Figure 1, where the up-scattering is seen on the high energy side of the asymptotic result 
and the extended down-scattering is seen on the low energy side.  These results for the scattered 
neutron energy distributions were calculated with MCNP6 by using a pencil beam problem geometry 
with a given neutron energy source and tallying the once-scattered neutrons.   
 
The broadening of the output neutron energies with respect to the angle of scattering is also seen in 
Figure 1.  Also notice that the Asymptotic and Free Gas curves have the same integral area under their 
curves. 
 
The method used in MCNP is called “Sampling the Velocity of the Target Nucleus” and it is described in 
the older MCNP5 manual’s chapter 2, “Geometry, Data, Physics and Mathematics” J1.  This theoretical 
description is not currently in any of the MCNP6 documentation. 
 
This MCNP up-scattering method includes more physics (e.g., the velocity of the target nucleus) than the 
asymptotic models (i.e., the target nucleus is assumed to be at rest) taught in introductory nuclear 
engineering or nuclear physics classes.  The MCNP model also limits back to the simple asymptotic 
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model when the neutron energy is much, much larger than the energy of the target nucleus.  If 10 eV 
incident neutrons had been used in Figure 1, the free gas spectral shapes would have been much more 
rectangular, i.e., much more like the asymptotic shape. 
 
In actual code practice, MCNP uses analytic formulas for neutron scattering off of Hydrogen, and the 
“Sampling the Velocity of the Target Nucleus” for all other materials at all temperatures as long as the 
incident neutron energy is less than 400 kT, where kT is the material of the target nucleus temperature 
in the same energy units as the neutron.  When the neutron energy is 400x more than the target 
neutron energy, then the simpler asymptotic approach is used. 
 
Similar to the Doppler Broadening of resonance capture cross sections, the “Sampling the Velocity of the 
Target Nucleus” method modifies the scattering cross section to find an effective scattering cross 
section which includes the effect of target nucleus motion.  This is shown in equation (2.1) of the 
MCNP5 documentationJ1.  (Note that the MCNP5 manual equation has an incorrect dν; it should be a dV 
instead)  
 

         v(E)σ(E) = ∫∫∫ v
r
σ

0
(E

r
)V dVdΩdΦ                                       (1) 

  
where  the LHS has the lab quantities for the neutron velocity, v, and the cross section, σ, 
             the RHS has the quantities for the relative velocity, vr the zero-temperature scattering    
                    cross section, σ0, and the nucleus velocity, V. 

 
The levels of integration are for every target nuclei velocity, V, every angle between the incident 
neutron velocity and the target nucleus velocity, Ω, and every center of mass scattering angle, Φ, for the 
collision between the neutron and the target nucleus. 
 
The idea of equation (1) is to calculate an effective scattering cross section (dependent only on the lab 
energy of the neutron) by averaging over the zero-temperature scattering cross section (as a function of 
relative velocity), the relative velocity between the neutron and the target nucleus, and the Maxwellian 
distribution of target nuclei velocities at the given temperature. 
 
In the implementation of the “Sampling the Velocity of the Target Nucleus” method, one key simplifying 
assumption is made; namely, the zero-temperature scattering cross section as a function of the relative 
velocity is assumed to be a constant.  This assumption is valid in the case of down-scattering off of low-Z 
nuclei (e.g., hydrogen with its 20 barn cross section), but is much less valid for high-Z nuclei and their 
scattering resonances.   
 
In the calculation of the effective scattering cross section, the relative velocity between the neutron and 
the target nucleus becomes very important.  The distribution of the target nuclei velocity directions is 
assumed to be isotropic, hence the relative velocity can be described as in the equation just below 2.1 of 
the MCNP5 manual.  (Note that the MCNP5 manual equation misses the subscripting of the μt term, it 
has μt.) 
 

 vr = (v2 + V2 – 2vVμt)1/2                                                           (2) 



 
where μt = the cosine of the angle between the original neutron velocity, v, and the target  
                    nucleus velocity, V. 
 

Following the development in the MCNP5 documentation, this leads to a probability distribution 
function of (and note that the MCNP5 documentation omits the “+” sign and uses an infinity sign for the 
proportionality) 
 

 P(V,μt) ∝ (v2 + V2 – 2vVμt)1/2 (V2exp(-β2V2))                      (3) 
 
 where β is defined as ((Amn)/(2kT))1/2 , 
                          A is the atomic weight ratio, 
             mn is the neutron mass, 
             T is the material temperature, and 

            1.0/β is the most likely scalar velocity of the target nuclei in the Maxwellian distribution. 
 
This leads to a sampling method when a rejection scheme is added to account for the impossibility or 
improbability of collision events for arbitrary combinations of the target nucleus velocity, the original 
neutron velocity, and the scattering cosine between the 2 velocities.  For example, if the original 
neutron velocity is the same as the target velocity, and if the directions of travel are identical, then no 
collision can or will happen.  This is a relatively rare combination, though, and the minimum efficiency 
for this rejection scheme is 2/3. (Note that the MCNP5 manual incorrectly gives 68% for this number.) 
 
The minimum efficiency (lowest probability of collision) occurs when the neutron and the target nucleus 
have the same velocity.  The 2/3 number can be calculated from the following integral, obtained from 
the rejection formula by assuming that the incident neutron and the target nucleus have the same 
velocity and integrating over all angles. 
 

 Min. Eff. = 1.0 / (2.0)1/2 * ∫ (1 – μt)1/2 dμt  = 2/3                  (4) 

  

 where the integral goes from -1.0 to 1.0. 
 
This “Sampling the Velocity of the Target Nucleus” methodology in MCNP calculates the correct 
normalized magnitude for the scattering cross section and is thus approximate only in the scattering 
output spectra with respect to energy and angle.  This approximation is due to the assumption of 
constant scattering cross sections. 
 
 
Extension of the Monte Carlo Neutron Up-Scattering Methodology to Include Non-Constant Scattering 
Cross Sections  
 
Over the years, a large number of papers have been published which document the development of 
techniques to extend the Doppler Broadening methodology to include the effects of non-constant 
scattering cross sectionsA1-A10.  One method which was developed and explored for a while was to 



generate S(α,β) tables for the high Z target nucleiE1-E6.  This method was shown to work correctly, but 
the extra effort required to calculate problem specific tables was found to be burdensome. 
 
In more recent years, the DBRC (Doppler Broadening Rejection Correction) techniqueD1-D13 has been 
developed for Monte Carlo codes to include the effects of non-constant scattering cross sections.  
Though DBRC is not currently in the production version of MCNP, it has been tested in both a branch 
versionD9 of MCNP5 and a branch versionD1 of MCNP6. One requirement for the implementation of the 
DBRC method into a Monte Carlo transport code is that the zero degree scattering cross sections for the 
target nucleus must be available.  In MCNP, the simple expedient of including the zero degree cross 
sections in a material card and in a tally satisfies this requirement. 
 
The DBRC adds another rejection criterion to the MCNP “Sampling the Velocity of the Target Nucleus” 
methodology.  The zero-temperature scattering cross section is not assumed to be a constant in 
equation 1 and an additional rejection scheme is employed to account for the non-constant cross 
sections.  Because of the spiky nature of cross section shapes near resonance energies, this rejection 
scheme can become quite inefficient.  There are methods availableD3 to ameliorate this inefficiency, but 
at present, they are not available in MCNP. 
 
With the DBRC scheme, MCNP calculates not only the correct normalized magnitude for the scattering 
cross sections but also the correct scattering output spectra of energy and angle.  Furthermore, in the 
absence of neutron scattering resonances, the DBRC limits back to the free gas scattering model. 
 
The general effect of the resonance scattering is to enhance the scattering of neutrons towards the 
scattering resonance energies – where at least for the large low-lying resonances of U-238 and Pu-240 – 
the peak energies of the scattering and capture resonances coincide.  Thus, the parasitic neutron 
capture is enhanced.  This effect is well-known in the LEU reactor world and is sometimes known as the 
Doppler Defect.  For a typical LWR, this reactivity effect is in the 10’s or a few 100’s of PCM, where 1 
PCM is 0.00001 in keff. 
 



 
 
Figure 2:  Neutron Scattering off of 1000 K U-238 
 
A sample DBRC result is shown in Figure 2. 
 
There is a big U-238 scattering resonance at 6.67 eV, and the DBRC result clearly shows its influence on 
the scattering output distribution in energy.  Up-scatter is actually the most likely result for the 
collisional event, despite the relatively low material temperature.   
 
This up-scatter effect is generally seen for neutron incident energies just below any big scattering 
resonance.  Also notice that the directionality of the lab scattering angle is reversed with respect to the 
normal (non-resonance) situation.  Back-scattered (μ < 0) neutrons come out at higher energies than do 
the forward-scattered (μ > 0) neutrons for this specific case of the incident neutron energy being just 
below a big scattering resonance. 
 
When the neutron incident energy is just above a big scattering resonance, then the down-scattering is 
enhanced, but the directionality is the same as the normal (non-resonance) situation.  Back-scattered 
neutrons come out at lower energies than do the forward-scattered neutrons. 
 
Angular Distribution of Scattered Neutrons in Monte Carlo Calculations 
 
In the asymptotic approach to neutron scattering, scattering events are assumed to be isotropic in the 
center of mass system. For low Z targets, the resultant lab scattering is not isotropic.  However, for high 
Z target nuclei, the resultant lab scattering is still nearly isotropic. Even though this lab scattering is 
nearly isotropic in an integral sense, it is not isotropic with respect to the detailed outgoing neutron 
energy. 
 
In the free gas scattering and DBRC models, some differences in angular dependence are seen. 

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

6.1E-06 6.3E-06 6.5E-06 6.7E-06 6.9E-06

Ta
lly

  o
f 

O
u

tp
u

t 
N

e
u

tr
o

n
s

Outgoing Neutron Energy (MeV)

6.52 eV Neutrons onto 1000 K U-238
(with Lab Angle Dependance)

-1 to -0.75

-0.75 to -0.50

-0.50 to -0.25

-0.25 to 0.0

0.0 to 0.25

0.25 to 0.50

0.50 to 0.75

0.75 to 1.0

DBRC

Free Gas

Asymptotic



 

 
 
Figure 3:  mubar as a Function of Outgoing Neutron Energy 
 
mubar is the ratio of the P1 component of scattering to the P0 component.  In Figure 3, the dependence 
of the average lab scattering angle with respect to the outgoing neutron energy is seen for all 3 models.  
The effects of the scattering resonance at 6.67 eV in U-238 can be seen on mubar for the case of DBRC.    
Thus, the scattering resonance affects the angular distribution of the scattered neutrons. 
 
 It is also noted that the most forward scattering (maximum mubar) always occurs for neutron self-
scatter (i.e., no energy change). 
 
Neutron Up-Scattering in the Cross Section Processing for Deterministic Calculations 
 
In contrast to Monte Carlo methods where the up-scattering physics is carried out in the transport 
calculation, the up-scattering physics in deterministic methods is carried out in the neutron cross section 
processing codes (e.g., in NJOYJ4) and the results are then included in the multi-group cross sections 
used by the transport codes (e.g., PartisnJ3).  However, the two basic approaches of free gas scattering 
(with and without resonance scattering effects) are still present in deterministic methods. 
 
For neutron up-scattering without high-Z resonance effects, NJOY uses a free gas scattering approach 
taken from the inelastic incoherent scattering methodology in THERMR.  Like MCNP’s methodology, this 
includes the velocity of the target nuclei and it also limits back to the asymptotic approach when the 
incident neutron energy is much, much greater than the target nucleus energy.   
 
In actual code practice, NJOY uses free gas scattering (with up-scattering) for incident neutron energies 
up to 10 eV for all materials at temperatures less than 3000 K.  For materials at temperatures higher 
than 3000 K, NJOY uses free gas scattering for incident neutron energies up to 38.68 * the material 
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temperature.  Otherwise, the asymptotic approach is used in NJOY, except that NJOY does not require 
the neutron scattering in the center of mass to be isotropic.  It uses the actual non-isotropic center of 
mass ENDF scattering data if such data is available for the target nucleus. 
 
When the material temperature is greater than 3000 K, the 10 eV maximum energy for free gas 
scattering is scaled upward by the following quantity: 
 

 Matl Temp(eV) * 11604.5(K/eV) / 3000(K)                         (5) 
  
 where the units are given in parentheses. 
 
There is a minor typo in the NJOY documentation (including the most recent manualJ4) in regards to the 
energy grid scaling performed by THERMR.  The energy grid is used to calculate the free gas scattering 
quantities of interest.  The top of the new scaled energy grid is: 
 

 OLD EGRID(NGRID) * Matl Temp / 293.6                           (6)                                
 
 where NGRID is the number of points (117) in the energy grid, 
                           EGRID(NGRID) is the highest energy point on the grid, 
              OLD EGRID(NGRID) = 10 eV, and  
                            the material temperature is in degrees K.  
 
The NJOY documentation gives an incorrect value of 300 K in equation (6) and also states that EMAX is 
scaled in the same way.  The maximum value, EMAX, for free gas scattering (including up-scattering) is 
actually scaled upward by the quantity shown in Equation (5).   
 
This energy grid scaling number will be approximately 10x larger that the transition energy, EMAX, 
between the asymptotic and the free gas scattering models.  Thus, THERMR calculates scattering for one 
more decade of incident neutron energies than are actually needed by GROUPR.  However, the user can 
extend the up-scattering range in GROUPR by increasing the user input EMAX to values higher than 10 
eV.  A value of 100 eV would establish a criterion very much like MCNP’s 400x (actually 386.82x) the 
material temperature and would still be within the range of values calculated by THERMR. 
 
Values for the user input of EMAX less than 10 eV are appropriate for thermal scattering situations when 
S(α,β) tables are used.  However, such low values in an elevated temperature up-scattering context limit 
the energy grid scaling performed in THERMR.  This is done by truncating the EGRID at the value 
corresponding to the user supplied EMAX and also thus limiting the free gas scattering model 
application in GROUPR to lower multiples (< 38.68) of the material temperature.  The effective OLD 
EGRID(NGRID) becomes OLD EGRID(some value < NGRID) and thus the 10 eV implicit in Equation 5 
becomes the user-supplied EMAX < 10 eV.  The EMAX input in the THERMR module of NJOY is thus 
overloaded and should probably be replaced by 2 variables; one for thermal scattering at very low 
neutron energies and one for neutron up-scattering at elevated material temperatures. 
 
In NJOY, the effective scattering cross section is calculated using an S(α,β) approach, where α and β are 
dimensionless quantities related to the change in momentum and the change in energy, respectively,  of 
the scattered neutron. 



  

 α = (E’ – E + 2 μt (E’E)1/2) / AkT                                               (7) 
 
 β = (E’ – E) / kT                                                                          (8) 
 
 where E is the incident neutron energy 
              E’ is the outgoing neutron energy 
              A is the atomic weight ratio of the scattered nucleus mass to the neutron mass 
              kT is the material temperature expressed in the same energy units as E and E’. 
 
β is thus negative for neutron down-scattering and positive for neutron up-scattering.  Also note that for 
high Z (i.e., large A) targets, β will generally be larger than α. 
  
As coded in the THERMR routine of NJOY, the free gas S(α,β) kernel used to calculate cross sections is 
  

 S(α,β) = exp( - (α+β)2/(4α)  ) / (4πα)1/2                                  (9) 
 
However, the symmetric form in which the free gas thermal scattering kernel data is stored in ENDF is 
 

 SS(α,β) = exp( - (α2+β2)/(4α)  ) / (4πα)1/2                            (10) 
 
 where  
 

S(α,β) = SS(α,β) * exp(-β/2) = SS(α,β) * exp(-2αβ/4α)     (11) 
 
For large values of β, the S(α,β) form used to calculate cross sections in Equation (10)  has potential 
numerical precision problems with the exp(-β/2) term in Equation (11).  Large values of │β│ also 
generally correspond with the conditions of the asymptotic approach, i.e., a large neutron energy 
relative to the nucleus energy. 
 
An un-normalized shape of the scattered neutron energy distribution can be determined by the 
integrating the following partial equation over all angles for a given incident neutron energy of E:  
 

 f(E’) ∝  ∫ ((E’/E)1/2 * S(α,β)) dμt                                            (12) 
 
As for the angular distribution of scattered neutrons from the NJOY free gas scattering, the shape is 
determined for given values of E and E’ (since the μt dependence is buried in the α term): 
 

 f(μt) ∝   S(α,β)                                                                         (13)  
 



Since μt is already in the lab coordinate system, calculations of Legendre coefficients appropriate for 
multi-group scattering cross sections are fairly straightforward. 
 
A sample NJOY result for free gas scattering is shown in Figure 4:  
 

                                   
  
Figure 4:  Comparison of MCNP and NJOY Scattering Spectra for He-4 
 
The NJOY scattering results were generated with a very fine group mesh in GROUPR.  The source 
neutron energy was modelled as one of the very fine energy groups. 
 
Figure 5 is an additional NJOY sample result. 
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Figure 5: Comparison of MCNP and NJOY Scattering Spectra for U-238 
 
The big scattering resonance for Figure 5 is at 36.67 eV.  The consistency between the MCNP and NJOY 
free gas scattering approaches is again seen in Figure 5.  Also notice the slightly non-rectangular 
asymptotic result from NJOY.  The outward bowing of the asymptotic curve is due to the fact that the 
scattering range determined by (A-1)2/(A+1)2 does not exactly coincide with the energy  group 
boundaries used in GROUPR.  So the outward bowing represents groups on the edges which only 
partially contain the asymptotic scattering range.  
 
Yet another important NJOY result is apparent from Figure 5.  If the neutron energy had been only a 
little bit higher (say > 38.682 eV), then NJOY would have switched from the free gas model to the 
asymptotic model and missed a lot of physics.  At 36x the material temperature, Figure 5 shows that the 
free gas scattering model has not yet begun to approach the asymptotic model. This is why the 38.68x 
the material temperature in NJOY should be extended to something more like MCNP’s 400x criterion. 
 
Though it is not shown here, the angular dependence of the scattered neutrons from the NJOY free gas 
scattering model is just like the angular dependence of the scattered neutrons from the MCNP free gas 
model shown in Figure 3. 
 
The Los Alamos version of NJOY does not currently include the capability to include resonance scattering 
effects into the Doppler Broadening of scattering cross sections, though two such deterministic 
capabilitiesB1-B3, C1-C8 exist elsewhere.  One of the methodsB1-B3 decomposes the energy variation into 
Legendre polynomials and uses integration by parts and the otherC1-C8 uses analytic integration with 
ultra-fine energy groups. 
 
Development of a Hybrid Scheme to Calculate Resonance Effects on Free Gas Scattering 
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A hybrid approach to free gas neutron scattering in the vicinity of high Z scattering resonances is being 
developed at Los Alamos for future inclusion into the THERMR module of NJOY.  It is based on a direct 
numerical integration of the equations used in MCNP’s “Sampling the Velocity of the Target Nucleus” 
methodology.  It includes the resonance scattering effects by a weighting scheme analogous to implicit 
capture weights used in Monte Carlo transport.  It also includes the milder weights from the rejection 
scheme used to account for the impossibility or implausibility of certain combinations of neutron and 
target nucleus velocities and directions.   
 
This new scheme is not necessarily efficient in a figure of merit sense, but it is conceptually simple.  
(There are some techniques under investigation which should improve its efficiency.)  In either MATLAB 
or FORTRAN, the actual coding is less than 300 lines.  As each phase space element of the numerical 
integrals is evaluated, the results are accumulated into finely meshed output energy and angular bins. 
These integrals must be carried out in the relative velocity phase space (to pick up the Doppler 
Broadening effects) and only then can the results be mapped onto the lab system for usage in 
deterministic codes.  This is quite different from the free gas scattering approach, where the 
calculational results are obtained directly in the lab system. 
 
Provision is also made for a distribution of starting energies for the incident neutron in order to model a 
multi-group bin.  Of course, specific single incident energies can also be used.  The output neutron 
energy distributions can then integrated into neutron energy groups, while the angular distribution 
within an output energy group can be decomposed into Legendre components. 
 
For the energy dependence of the scattered neutrons, three levels of nested integration are required.  
The three levels are the velocity of the target nucleus, the angle between the incident neutron velocity 
and the target nucleus velocity, and the center of mass scattering angle (once a collision has occurred) 
between the incident neutron and the target nucleus.   
 
For the angular dependence of the scattered neutrons, a fourth level of integration is also required.  It 
has to do with the rotation from the center of mass back to the lab coordinates.  An integration around 
the center of mass azimuthal angle (or at least around a symmetric ½ of the azimuth) – is required.  
Azimuthal symmetry is present in the center of mass system, but the angular dependence does not 
rotate back unchanged to the lab system, and the final multi-group cross sections for deterministic 
transport must be in the lab system. 
 
This scheme may be considered a form of “stratified sampling”, where the sampled quantities of the 
target nucleus velocity, the cosine of the angle between the incident neutron and the target nucleus 
directions, and the center of mass scattering angle (once the scattering collision has occurred) are 
uniformly distributed.  If the fourth level of integration is needed, the azimuthal angles in the center of 
mass are also uniformly sampled. 
 
Figure 6 compares the outgoing neutron energy spectrum from the DBRC result in Figure 2 with the 
hybrid result. 
 



 
 
Figure 6: Comparison of DBRC and the hybrid method on the Outgoing Neutron Energy 
 

 
 
Figure 7:  Comparison of mubar from DBRC and from the hybrid method as a function of the Outgoing 
Neutron Energy 
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Figure 7 gives a sample angular result when comparing DBRC and the hybrid method.  The DBRC angular 
result was already seen in Figure 3.  The mubars were estimated by averaging the mubar-weighted 
energy and angular dependent fluxes over all angles at each outgoing energy. 
 
Of course, the contribution of each element of the nested integration in the hybrid method to the final 
output quantities in the lab system is not uniform.  Scattering resonances distort the free gas scattering 
results significantly in the near vicinity of the scattering peak.  The effective range of the scattering 
resonance effect is generally taken to be: 
 

 vres  ±  4 / β                                                                           (14) 
 
 
 where β was defined earlier after Equation (3), and 
                           vres is the relative neutron velocity which corresponds to the energy of the resonance.   
 
At relative velocities beyond these limits, the Maxwellian distribution used in the integration falls off 
very rapidly to 0.0.  The scattering cross section also asymptotes back to a flat distribution.  Therefore, 
the usual free-gas scattering approach may be used for neutron incident energies not very close to the 
actual resonance energies. 
 
Another insight is that if the desired multi-group neutron cross sections are fairly coarsely gridded, then 
the angular behavior near the resonance can be swallowed up by a broad energy group and the overall 
dependence will become isotropic (or nearly isotropic) in that group.  So the angular dependence of 
Doppler-Broadened scattering cross sections will only be significant for cross section group widths which 
are smaller than or comparable in width to the effective range of the scattering resonance. The same 
phenomenon is also true for the energy dependence of the Doppler-Broadened scattering cross 
sections.  The effects will only be seen in multi-group cross section sets where the energy resolution is 
sufficient to resolve the effects in the effective range of the scattering resonances. 
 
Possible Acceleration of the Hybrid Approach to Resonance Scattering 
 
For a given incident neutron energy, v, the largest contributions to the output energy and angular  bins 
come from combinations of target nucleus velocity, V, and the angle between the incident neutron 
velocity direction and the target nucleus velocity direction, μt, which give values of the relative neutron 
velocity corresponding to the energies of the scattering resonances: (and it is here assumed that the 
scattering cross section at the resonance peak is much higher than the rest of the nearby in energy 
scattering cross sections) 
 

 Scattering Resonance Energy = ½ mnvr
2                        (15) 

 
Therefore, combinations of V and μt which are related in the following way (derived from Equation 2) 
contribute the most: 
 

 Constant1  =  V2 – 2 μt v V                                                (16) 



 
  where Constant1 is an arbitrary constant which is related to the resonance energy. 
 
And if the neutron velocity, v, is significantly larger that the target nucleus velocity, V, (which is usually 
true for high Z target nuclei, even at elevated material temperatures) this may be simplified by dropping 
the V2 term: 
 

 Constant2 = μt V                                                                 (17) 
 
This suggests that an efficient, though approximate, integration could be carried out along “lines” (i.e., 
the contours) of constant μt * V instead of along the cardinal axes of V and μt. 
 
Figure 8 shows two typical contour curves along lines of constant μt * V.  In this case, there is scattering 
resonance just below and another scattering resonance just above the incident neutron energy.  The 
front axis is the cosine of the angle between the incident neutron motion and the target velocity motion 
– divided into 401 points between cosine values of -1 and 1.  The axis going into the paper represents 
the velocity of the target nucleus in terms of 1/β *100.  The vertical axis is the logarithmic value of the 
scattering cross section.  It is clear that any integral quantity involving the scattering cross section as a 
function of angle and target nucleus velocity will be determined largely by the points along the 2 
elevated curves. Notice that the curves asymptote at the midpoint of the front axis – which corresponds 
to a scattering cosine angle of 0.0.  The 2 steep valleys correspond to the very low scattering cross 
sections seen just below a scattering resonance energy. 
 



 
 
Figure 8: Typical Contour Curves from Resonance Scattering 
 
Summary 
 
Development of a Doppler-Broadening capability for scattering resonances in high Z target nuclei is 
underway at Los Alamos in the nuclear data team of XCP-5.  This effort includes a thorough review of 
current capabilities, current documentation, and an extensive literature review.  Implementation of the 
Doppler-Broadening capability for high-Z scattering resonances into the THERMR module will occur in 
the ongoing NJOY21 efforts. 
 
Since the calculation of Doppler-Broadening of Resonance Scattering is somewhat cumbersome, it is 
anticipated that this capability will become a user option in NJOY – to be used only in the near vicinity of 
high-Z scattering resonances. 
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